Gabe, E. J., Le Page, Y.. Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Crrst. 22, 384-387.

Hadjoudis, E. (1994). Mol. Crist. Liq. Crrst. 246, 127-1.34
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kimura, H.. Sakata, K. \& Takahashi, H. (1993). J. Mol. Struct. 293. 1-4.
Lambi, E., Gegiou, D. \& Hadjoudis, E. (1995). J. Photochem. Photobiol. A Chem. 86, 241-246.
Lu, Z.-L., Duan, C.-Y.. Tian, Y.-P., You, X.-Z., Fun, H.-K. \& Sivakumar, K. (1996). Acta Cryst. C52, 1507-1509.
North, A. C. T.. Phillips, D. C. \& Mathews, F. S. (1968). Acta Crist. A24, 351-359.
Sheldrick, G. M. (1990a). Acta Crụst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany
Xu. X.-X., You. X.-Z., Sun. Z.-F., Wang. X. \& Liu, H.-X. (1994). Acta Crrst. C50. 1169-1171

Acta Cryst. (1998). C54, 1921-1923

Two Macrocyclic Azacrown Ethers

Alessandra Forni
CNR - Centro per lo Studio delle Relazioni fra Struttura e Reattività Chimica, Via Golgi 19, I-20133 Milano, Italy:
E-mail: aforni@rs6.csrsrc.mi.cnr.it
(Received 21 April 1998; accepted 28 May 1998)

Abstract

The structures of two macrocyclic azacrown ethers, namely, 4,10-bis(1-naphthylmethyl)-1,7-dioxa-4,10-diazacyclododecane, $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$, and $4,10,16,22$-tetrakis (1 -naphthylmethyl)-1,7,13,19-tetraoxa-4,10,16,22tetraazacyclotetracosane as its bis(methylene dichloride) solvate, $\mathrm{C}_{60} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, have been determined by single-crystal diffractometry. Both molecules are characterized by a cavity suitable for hosting cationic guests.

Comment

Over the past few years, the design of macrocyclic ligands has received increasing attention in view of the photochemical and photophysical properties characterizing the supramolecular adduct obtained by complexing the macrocycle with an appropriate electron acceptor (Lehn, 1995). We report here the structures of two diazacrown ethers, namely, 4,10-bis(1-naphthylmethyl)-1,7-dioxa-4,10-diazacyclododecane, (I), and 4,10,16,22tetrakis(1 -naphthylmethyl)-1,7,13,19-tetraoxa-4,10,16,22tetraazacyclotetracosane as its bis(methylene dichloride)
solvent, (II). These compounds were synthesized as part of a study of macrocycles complexing metal and ammonium cations (see, for example, Quici et al., 1996).

(I)

(II)

Both compounds crystallize in a centrosymmetric space group with half a molecule in the asymmetric unit. In (I), the ether ring forms a cavity with transannular $\mathrm{Ol} \cdots \mathrm{Ol}^{\mathrm{i}}$ and $\mathrm{N} 4 \cdots \mathrm{~N} 4^{\mathrm{i}}$ distances of 4.231 (2) and 4.504 (2) \AA, respectively. The shortest transannular contact is $\mathrm{O} 1 \cdots \mathrm{C} 6$ at $3.822(2) \AA$. Here and elsewhere, the superscript refers to the symmetry-centre operation which completes the molecule, i.e. $-x,-y, 1-z$. The ring adopts a chair-chair conformation with a dihedral angle of $6.0(2)^{\circ}$ between the plane containing atoms $\mathrm{N} 4, \mathrm{C} 5$ and C 6 , and the plane containing atoms Ol , C2 and C3. The torsion angles of this ring are reported in Table 1. The least-squares plane of the naphthalene system forms a dihedral angle of $89.54(8)^{\circ}$ with the plane formed by atoms N4, C5 and C6. The geometric parameters of (I) were compared with those of a similar compound where the naphthalene is substituted by a benzene ring (Mendez et al., 1992). The monoprotonated form of that compound proved suitable for complexing neutral guests such as alcohols. No relevant differences between (I) and that compound were found.

The structure of (II), which contains two $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules, was determined at $T=245 \mathrm{~K}$ because at room temperature the crystals lose the solvent and collapse within a few days. The molecule is characterized by a large cavity having the following transannular distances: $\mathrm{N} 1 \cdots \mathrm{Nl}^{\mathrm{i}}=9.619(3), \mathrm{N} 7 \cdots \mathrm{~N} 7^{1}=8.313(2)$, $\mathrm{O} 4 \cdots \mathrm{O} 4^{\mathrm{i}}=8.129(2)$ and $\mathrm{O} 10 \cdots \mathrm{O} 10^{i}=6.216(2) \mathrm{A}$. The shortest transannular contact is $\mathrm{C} 9 \ldots \mathrm{C}^{i}$ of 5.266 (4) \AA. The conformation of the macrocycle is determined by a sequence of essentially trans and gauche torsion angles; the torsion angles that significantly de-
viate from this motif are reported in Table 2. The two least-squares planes of the symmetry-independent naphthalene rings form a dihedral angle of $68.70(4)^{\circ}$.

Fig. 1. Plot of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) $-x,-y, 1-z$.

Fig. 2. Plot of (II), without the solvent molecule, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) $-x,-y, 1-2$.

The solvent molecule is disordered within the cavity of the macrocycle and was modelled as two molecules. In both cases, the two Cl atoms of the solvent point outside the macrocycle.

Experimental

The synthesis of the title compounds will be reported elsewhere (Quici et al., 1998)

Compound (I)

Crystal data
$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=454.59$
Monoclinic
$P 2_{1} / c$
$a=9.7898(9) \AA$
$b=7.3974$ (6) \AA
$c=17.292(2) \AA$
$\beta=99.368(6)^{\circ}$
$V=1235.6(2) \AA^{3}$
$Z=2$
$D_{s}=1.222 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$\omega / 2 \theta$ scans
$\theta_{\text {max }}=25^{\circ}$
Absorption correction: none
2314 measured reflections
$h=0 \rightarrow 11$
$k=0 \rightarrow 8$
$l=-20 \rightarrow 20$
2178 independent reflections
1284 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.015$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 32
reflections
$\theta=4.40-11.87^{\circ}$
$\mu=0.076 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.44 \times 0.40 \times 0.20 \mathrm{~mm}$
Almost colourless

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$u \cdot R\left(F^{2}\right)=0.071$
$S=1.038$
2178 reflections
223 parameters
All H atoms refined
$n^{\prime}=1 /\left[\sigma^{2}\left(F_{(\prime)}^{2}\right)+(0.0413 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{6}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.001$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.102 \mathrm{e}_{\AA^{-3}}^{-3} \\
& \Delta \rho_{\min }=-0.094 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { SHELXL93 (Sheldrick, } \\
& 1993 \text {) } \\
& \text { Extinction coefficient: } \\
& 0.0110(16) \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Cristallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected torsion angles $\left({ }^{\circ}\right)$

$\mathrm{C}^{\prime}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$-98.3(2)$	$\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	$76.9(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4$	$81.2(2)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1^{1}$	$78.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$	$-140.76(15)$		

Symmetry code: (i) $-x,-y, 1-z$.

Compound (II)

Crystal data
$\mathrm{C}_{60} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{4} .2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ Mo $K \alpha$ radiation
$M_{r}=1079.04$

Triclinic

$P \overline{1}$
$a=11.369$ (3) \AA
$b=12.175$ (3) A
$c=12.268$ (3) \AA
$\alpha=64.42(2)^{\circ}$
$\beta=72.89$ (2) ${ }^{\circ}$
$\gamma=73.37(2)^{\circ}$
$V=1438.7(6) \AA^{3}$
$Z=1$
$D_{x}=1.245 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD with an LT-2 device for lowtemperature collection
Frame scans
Absorption correction: none
13318 measured reflections
5063 independent reflections

Cell parameters from 65 reflections
$\theta=0-23^{\circ}$
$\mu=0.256 \mathrm{~mm}^{-1}$
$T=245$ (2) K
Prism
$0.33 \times 0.20 \times 0.20 \mathrm{~mm}$
Pale yellow

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.084$
$S=1.073$
5061 reflections
502 parameters
H atoms of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ riding; coordinates of remaining H atoms refined, with U_{iso} restrained

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla. M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Lehn, J.-M. (1995). In Supramolecular Chemistry. Weinheim: VCH.
Méndè., L., Singleton, R., Slawin, A. M. Z., Stoddart, J. F., Williams, D. J. \& Williams, M. K. (1992). Angen. Chem. Int. Ed. Engl. 31, 478-480.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1991). PARSTCIF. Program for Creating a CIF from the Output of PARST. University of Parma, Italy.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Quici, S., Manfredi, A. \& Buttafava, M. (1996). J. Org. Chem. 61. 3870-3873.
Quici, S. et al. (1998). In preparation.
Sheldrick, G. M. (1993). Program for the Refinement of Cnistal Structures. University of Göttingen, Germany.
Siemens (1994). SMART and SAINT. Area Detector Control and Integration Soffurare. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Zsolnai, L. \& Pritzkow, H. (1995). ZORTEP. An Interactive ORTEP Program. University of Heidelberg, Germany.
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0533 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.094$
$\Delta \rho_{\text {max }}=0.164 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.277 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Selected torsion angles $\left({ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	$37.7(2)$	$\mathrm{C} 6-\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 9$	$-86.0(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 7-\mathrm{C} 8$	$160.67(13)$		

Data collection for compound (II) was carried out using a Siemens SMART CCD area detector and standard reflections were, therefore, not measured. The first 50 frames of data were recollected at the end of data collection. No crystal decay was observed.

Data collection: XSCANS (Fait, 1991) for (I); SMART (Siemens, 1994) for (II). Cell refinement: XSCANS for (I); SAINT (Siemens, 1994) for (II). Data reduction: XSCANS for (I); SAINT for (II). For both compounds, program(s) used to solve structures: SIR92 (Altomare et al., 1994); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ZORTEP (Zsolnai \& Pritzkow, 1995); software used to prepare material for publication: SHELXL93, PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

Helpful discussions with Dr Tullio Pilati are gratefully acknowledged. The author thanks Dr Piero Macchi for his assistance in performing data collection on a Siemens SMART CCD device.

[^0]Acta Cryst. (1998). C54, 1923-1925

1,2-Bis(2-pyridylformimidoyl)hydrazine \dagger

Jennifer A. Armstrong, ${ }^{\text {a }}$ John C. Barnes ${ }^{\text {a }}$ and
Timothy J. R. Weakley ${ }^{b}$
${ }^{\text {a }}$ Department of Chemistry, University of Dundee, Perth Road, Dundee DDI 4HN, Scotland, and ${ }^{\text {b Department of }}$ Chemistry, University of Oregon, Eugene OR 97403-1253, USA. E-mail: j.c.barnes@dundee.ac.uk

(Received 12 March 1998; accepted 8 June 1998)

Abstract

The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6}$, is the minor trans product of the preparation of a dihydrotetrazine. Extensive electron delocalization is shown by the planarity of the molecule, except for one pyridyl group twisted out of plane by $14.1(1)^{\circ}$. The $\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}$ fragment has a $\mathrm{C}-\mathrm{N}$ distance of 1.297 (2) \AA and an $\mathrm{N}-\mathrm{N}$ distance of 1.404 (2) \AA. All other $\mathrm{C}-\mathrm{N}$ distances are close to $1.34 \AA$, typical of $\mathrm{C}=\mathrm{N}$ bonds. The NH_{2} groups form hydrogen bonds to pyridyl and hydrazine N atoms of adjacent molecules.

Comment

The title compound, (I), can be regarded as a dihydrazidine or an amide azine (Watson \& Neilson, 1975). It is formed as the minor product from refluxing pico-

[^1]
[^0]: Supplementary data for this paper are available from the IUCr clectronic archives (Reference: NA1370). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Alternative name: 1.2-bis[amino(2-pyridyl)methylene)diazane.

